
2003/2004 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
Refactor

PIT Corporation is creating a comprehensive Interactive Development Environment that will revolutionize pro-
gramming. A key feature of the IDE is the semantics-aware source code editor. You have been contracted to prototype
the variable renaming editing operation rapidly. While the finished editor will support many languages, the proto-
type editor only supports C–, a small subset of C, which only features simple variable declarations, expressions, and
statements. It does not contain comments or preprocessor directives.

Input will be a C– source program consisting of the text “main() ” on the first line by itself, followed by one
compound-statement, followed by “#if 0 ” on a line by itself, one or more semantic editing operations on separate
lines, followed by “#endif ” on a line by itself. Editing operations are applied in the order they appear. The format of
the "rename variable" operation is

nR/ old variable name/ newvariable name/
wheren is a line number in the source code containing the variable to be renamed, with slashes delimiting old and new
names. Renaming the variable will change it where it is declared and everywhere it is used. This is not a global string
replace. It does not change identically named variables declared in a different scope.

Note: The ’main()’, ’#if 0’, and ’#endif’ lines above are not part of the C– language grammar. They just allow
the input for this problem to be treated as a valid C program.

Notes: old variable namerefers to the first occurrence on the specified line number,n, if it occurs more than
once. To avoid conflicts,newvariable namewill not be the same name as a previously declared variable.

Output will be the updated source code after application of the semantic editing commands without the lines
“#if 0 ” through “#endif ”. Preserve whitespace from the input in the output.

Sample Input
main()

{

int tmp ;

int a; short b;

a=1; b=4; tmp=10;

{

int tmp;

tmp=b;

b=a;

a=tmp;

}

tmp = tmp + b;

printf("a=%d b=%d tmp=%d\n",a,b,tmp);

}

#if 0

10R/tmp/hold/

7R/hold/scratch/

12R/tmp/sum/

#endif

Problem 3
Refactor (continued)

Output for the Sample Input
main()

{

int sum ;

int a; short b;

a=1; b=4; sum=10;

{

int scratch;

scratch=b;

b=a;

a=scratch;

}

sum = sum + b;

printf("a=%d b=%d tmp=%d\n",a,b,sum);

}

C– GRAMMAR

The grammar is in the form used in "The C Programming Language" by Kernighan and Ritchie.

Syntactic categories (non-terminals) are indicated byitalic type, and literal words and characters (terminals) in
typewriter style. Alternative categories are listed on separate lines. An optional terminal or optional nonterminal
symbol carries the subscript “opt”.

declaration:
type-specifier declarator;

declaration-list:
declaration
declaration-list declaration

type-specifier:
short

int

declarator:
direct-declarator

direct-declarator:
identifier

compound-statement:
{ declaration-listopt statement-listopt }

statement:
expression-statement
compound-statement

expression-statement:
expressionopt ;

statement-list:
statement
statement-list statement

expression:
assignment-expression

assignment-expression:
additive-expression
unary-expression assignment-operator assignment-expression

assignment-operator:
=

Problem 3
Refactor (still continued)

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

multiplicative-expression:
unary-expression
multiplicative-expression* unary-expression
multiplicative-expression/ unary-expression

unary-expression:
postfix-expression

postfix-expression:
primary-expression
postfix-expression(argument-expression-listopt)

primary-expression:
identifier
constant
string
(expression)

argument-expression-list:
assignment-expression
argument-expression-list, assignment-expression

constant:
integer-constant

identifier: An alphabetic character followed by zero-to-30 alphanumeric characters.

[a-zA-Z][a-zA-Z0-9] f0,30g
integer-constant: One-to-nine decimal digits.

[0-9] f1,9g
string: Double quote, zero to 200 printable characters (excluding "), terminating double quote.

"[!#$%&’()*+,-./0-9:;<=>?@A-Z[\]ˆ_‘a-z{|}˜] f0,200g"

The keywordsshort andint are reserved words, and will not be used other than astype-specifiers.

