
2023/2024 Southern California Regional ICPC Rehearsal/”Warm-Up”

October 14, 2023; 11:30 AM PDT
Zoom Webinar ID will be posted on the socalcontest.org web site.
If you have any questions about the rehearsal, or need additional rehearsal login IDs, please send a
message to systems@socalcontest.org.

The following steps are designed to be executed within the programming contest environment. For the
contest rehearsal, a virtual appliance exists that very nearly matches the actual contest environment.
Download the virtual appliance from the socalcontest.org website.

Warm-Up Problem 1

This problem should be completed first. Do all the steps before attempting problems 2 and 3.

The purpose of this problem is to familiarize all contestants with many parts of the environment. All

contestants should submit this input correctly and run all commands listed before moving on to Warm-

up Problems 2 and 3.

Open the Firefox browser. To connect to DOMjudge, connect to:

 https://rehearsal.socalcontest.org/domjudge/

There is a shortcut for the “Terminal” for the command prompt at the bottom of the screen. IDEs can

be reached from the command prompt or from the Applications menu under Development.

Step 1: Type in the problem code:

 Select any one of the problem solutions and type it in (code follows) and save the file.

Step 2: Compile the code using from the command prompt:

 compile source_file

Note that the compile command is not necessary for Python 3.

Step 3: Get any supplementary materials and sample input and output from DOMjudge:

mailto:systems@socalcontest.org

Step 4: Test the code:

 Use the test data provided, along with any other data you choose.

NOTE: During the contest your code will be judged against data you never see (the “judge’s data”). The

sample data provided are not exhaustive – it is your responsibility to design a thorough test plan.

Your program can be run after compilation with the following (compilation not needed for Python 3):

C, C++, input from keyboard $./a.out

C, C++, input from file data.in $./a.out < data.in
C, C++, input from data.in, output to results.out $./a.out < data.in > results.out

Java, input from keyboard $ java classfile

Java, input from file data.in $ java classfile < data.in

Java, input from data.in, output to results.out $ java classfile < data.in > results.out

Python3, input from keyboard $ python3 sourcefile.py3

Python3, input from file data.in $ python3 sourcefile.py3 < data.in
Python3, input from data.in, output to results.out

 $ python3 sourcefile.py3 < data.in > results.out

Kotlin, input from keyboard $ kotlin ClassfileKt

Kotlin, input from file data.in $ kotlin ClassfileKt < data.in

Kotlin, input from data.in, output to results.out
 $ kotlin ClassfileKt < data.in > results.out

Step 5: Submit the code via the DOMJudge interface, first select the source file, then click submit:

http://data.in/
http://data.in/
http://data.in/
http://data.in/
http://data.in/
http://data.in/

Step 6: See the results from your submission:

Step 7: Request a Clarification by clicking the request clarification button on the main page …

… and then completing the form. Use the problem number as the subject for questions on a specific

problem.

If you don't have a specific Clarification regarding this rehearsal or one of the assigned problems, please

request a Clarification to familiarize yourself with the process. Submit a question like "What was the

color of that white horse?"

One objective of this rehearsal period is verifying that all components of the contest management system

are working and configured correctly. The officials are reviewing everything. Submission response times

are likely to be longer than they will be at the actual contest for similar submissions.

Step 8: (Optional) Find out how much time is left in the contest and look at the scoreboard:

 Time left – Look at your start page from DOMjudge where it is displayed in the upper right-hand

corner

 Score –Click the Scoreboard button on the ribbon (see Step 3) to see the current scores; your

team’s score is displayed on the start page.

Step 9: See the on-line language/library documentation:

 C++ library – file:///usr/share/doc/libstdc++-docs/html/index.html

 Java API – file:///opt/docs/java/api/index.html

 Python 3 – file:///opt/docs/python/index.html

 Kotlin – file:///usr/share/doc/kotlin/kotlin-reference.pdf

file://///usr/share/doc/libstdc++-docs/html/index.html
file://///opt/docs/java/api/index.html
file://///opt/docs/python/index.html
file://///usr/share/doc/kotlin/kotlin-reference.pdf

Warm-up Problem from 2002/2003

Unary Numbers

What could be simpler than binary numbers? Unary numbers! A Unary number n, n > 0, is coded as n – 1 one bits

followed by a zero bit. Thus the code for 5 is 11110. Here are some unary numbers.

decimal unary

1 0

2 10

3 110

4 1110

5 11110

6 111110

7 1111110

Input consists of decimal numbers, one per line, with no leading or trailing whitespace. Each number will be in

the range 1–76. Input is terminated by end-of-file.

For each number, produce a single line of output consisting of the input decimal number, with no leading zeroes or

spaces, a single space, and the unary equivalent with no leading or trailing spaces.

Sample Input

76

37

5

28

14

8

1

Output for the Sample Input

76 1110

37 1111111111111111111111111111111111110

5 11110

28 1111111111111111111111111110

14 11111111111110

8 11111110

1 0

unary.cpp (or unary.cc)

#include <iostream>

using namespace std;

int main ()

{

 int n;

 while(cin >> n) { // cin >> n is false when no values remain

 cout << n;

 cout << ' ';

 while (n > 1) {

 cout << '1';

 n--;

 }

 cout << '0' << endl; // endl causes a newline, ASCII 0x0A, to be emitted

 }

 return 0; // indicate normal program termination

}

unary.java:

import java.io.*;

class unary { //main class needs to match filename

 public static void main (String [] args) throws IOException

 {

 int n;

 String s;

 BufferedReader stdin;

 stdin=new BufferedReader(new InputStreamReader(System.in));

// wrap BufferedReader around InputStreamReader around System.in

 while ((s=stdin.readLine()) != null) {

 // BufferedReader.readLine returns null at end-of-file

 n=Integer.parseInt(s);

 System.out.print(n + " ");

 for (int i=n - 1; i > 0; i--) {

 System.out.print("1");

 }

 System.out.println("0"); // println() writes an ASCII 0x0A

 }

 System.exit(0); // indicate normal program termination

 }

}

unary.py3:

import sys

for line in sys.stdin:

 line=line.replace('\n','') # remove end-of-line present in strings read from input

 n=int(line)

 print(n, end=' ') # print number in decimal followed by one space

 for i in range(n - 1):

 print('1', end='') # print '1' without any trailing characters

 print('0') # print '0' followed by newline

exit(0) # indicate normal program termination

unary.c:

#include <stdio.h>

int main()

{

 int i;

 int n;

 char s[4]; /* make room for up to two decimal digits, end-of-line (newline),

 and a zero-byte to terminate the string */

 while(fgets(s,sizeof(s),stdin) != NULL) {

/* read an entire line into s. fgets() returns NULL at end-of-file */

 sscanf(s,"%d",&n); /* extract n from the input line */

 fprintf(stdout,"%d ",n);

 for (i=n - 1; i > 0; i--) {

 fputc('1',stdout);

 }

 fputs("0\n",stdout);

/* the newline character, \n, emits an ASCII 0x0A */

 }

 return 0; /* indicate normal program termination */

}

unary_seed.c:

#include <stdio.h>

int main()

{

 int i;

 int n;

 char s[4]; /* make room for up to two decimal digits, end-of-line (newline),

 and a zero-byte to terminate the string */

/*

 * Attempt to read an entire line into s. The read (fgets) preceding the while loop is the seed

read.

 */

 fgets(s,sizeof(s),stdin); /* attempt to read an entire line into s */

 while(!feof(stdin)) { /* while not end-of-file ... */

 sscanf(s,"%d",&n); /* extract n from the input line */

 fprintf(stdout,"%d ",n);

 for (i=n - 1; i > 0; i--) {

 fputc('1',stdout);

 }

 fputs("0\n",stdout); /* the newline character, \n, emits an ASCII 0x0A */

 fgets(s,sizeof(s),stdin); /* attempt to read an entire line into s */

 }

 return 0; /* indicate normal program termination */

}

unary.kt:

import kotlin.system.exitProcess

fun main() {

 var s: String?

 s=readLine() // seed read

 while (s != null) {

 var n=s.toInt()

 print(n); print(" ")

 while (n > 1) {

 print("1");

 n -= 1;

 }

 println("0")

 s=readLine()

 }

 exitProcess(0) // indicate normal program termination

}

2023/2024 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Warm-Up Problem 2
Xylophone

A xylophone is a musical instrument made of wooden bars, each of which makes a specific pitch when
struck with a mallet. The wooden bars must have contiguous integer lengths from the longest to the shortest,
without duplicates. In other words, every bar except for the rightmost one must have a length exactly 1
longer than the one immediately to its right. For example, a xylophone may have bars of lengths [7, 6, 5, 4]
or [10, 9, 8], but not [7, 5, 4] nor [3, 3, 2, 1].

You already have 3 wooden bars of different lengths, and want to create a xylophone using all of them.
You may not cut the bars or alter them in any way, but you may buy additional wooden bars as necessary.
The cost of buying a wooden bar is equal to its length. Find the minimum cost to build a xylophone.

The input contains a single line with three space-separated integers, denoting the lengths of the wooden
bars you already have. Each integer is between 1 and 5000, inclusive. You are guaranteed that the three
integers are distinct.

Your program must output a single integer that represents the minimum cost to make a xylophone using
all three given wooden bars.

Sample Input

10 3 7

Output for the Sample Input

32

2023/2024 SOUTHERN CALIFORNIA REGIONAL
INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Warm-Up Problem 3
Swamp County Toll Roads

Swamp County has just completed its first express toll roads. As is now the norm, there are no attended
toll booths—all tolls are collected electronically. Rather than issue electronic tags or transponders to road
users, toll collection is done based on the automated reading of license plates as vehicles pass through a toll
plaza.

For a variety of reasons, sometimes the license plate images are of low quality. When this happens it
is possible for license plates to be mis-read, particularly since some characters closely resemble others. The
county has studied cases where this has happened and has come up with estimates of the likelihood that a
given character will read correctly.

The county would like your team to write a program that will, given the error estimates for individual
characters as stated above, take a list of license plates as read and determine the probability that the entire
license plate was read correctly.

Input to your program will begin with a list of accuracy estimates. Each estimate consists of the
character, a single space, and its estimate of a correct read, in the range 0 < p < 1. For example, the first
line of the sample input indicates there is an 88% chance that an “I” read from a license plate is actually
an “I”. Any characters not in the list are taken as 100% (p = 1). You may assume that the reading of one
character has no effect on the reading of another character (they are independent). This list ends with an
empty line.

The remaining lines of input contain license plates as read, one per line, starting in the first column.
Each license plate contains a string of one to eight upper-case letters or digits. There are no more than fifty
license plates in the input. The list of license plates ends with end-of-file.

For each license plate, your program is to print a line with the the probability that the license plate was
read correctly as a value between zero and one. The value is to be rounded to and printed with three digits
after the decimal point. No leading or trailing white space is to appear on an output line.

Sample Input

I 0.88

1 0.99

0 0.87

O 0.95

Q 0.87

PR0GRAM

ICPC2018

2JKB843

1JKL893

SNU8J5

Warm-Up Problem 3
Swamp County Toll Roads (continued)

Output for the Sample Input

0.870

0.758

1.000

0.990

1.000

