
2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1
The Magical 3

Three is a magic number.

Yes it is; it’s a magic number.

Somewhere in the ancient, mystic trinity,

You get three as a magic number.

— Schoolhouse Rock

According to Pythagoras and the Pythagorean school, the number 3—which was named “triad”—is the
noblest of all digits, as it is the only number to equal the sum of all the terms below it. It is also the only
number whose sum with those below equals the product of them and itself (3 + 2 + 1 = 3 × 2 × 1). Your
task is to find the magic—the magic 3, that is—when it can occur as the last digit in a representation of a
positive integer in some base. Consider, for example, the number eleven. It can be represented as 138 and
234. Your team is to write a program that will find the smallest base for a given positive integer where the
integer’s representation in that base ends in 3.

Each line of input to your program will contain one positive integer less than 231, expressed in base ten,
starting in the first column. Input to your program will terminate with the end-of-file.

For each number in the input, print a line containing the smallest base for which the input number has
a representation that ends in 3, or the message “No such base” if there is no base that has a representation
of the number which ends in 3. No leading or trailing whitespace is to appear on an output line.

Sample Input

11

123

104

2

3

2103723004

Output for the Sample Input

4

4

101

No such base

4

2103723001





2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2
Liar, Liar, Pants on Fire

The Swamp County Sheriff’s Department (SCSD) gathers extensive witness statements during crime
investigations. Unfortunately, insufficient manpower is available to analyze witness statements. The secre-
tarial pool has transcribed witness statements into timelines. Your team has been hired to write a program
that will compare timelines between witnesses. Your program will compare each timeline with all others to
identify inconsistencies that merit further investigation.

Input to your program is a series of witness statement blocks for a single 24-hour period (00:00–24:00).
The first line of each witness statement block begins with a plus sign followed by the witness name (one to
thirty printable characters, not including commas). The remaining lines within the block are of the form:

startTime,stopTime,location,personBeingReportedOn

where:
• startTime and stopTime are in 24-hour HH:MM format—stopTime will be after startTime,
• location is a string of one to thirty printable characters without any commas,
• and personBeingReportedOn is a string of one to thirty printable characters without any commas,
terminated by end-of-line.

A witness can account for his/her own whereabouts or a different person’s whereabouts. The person
being reported on may or may not be a witness who has given statements to the SCSD. Witness statements
are not sorted by time. There will be no more than fifty distinct people named in the various witness
statements.

Your program is to construct a timeline of the whereabouts of each witness who made statements to the
SCSD for the full 24 hours, in chronological order, based on the statements of all witnesses. Witness reports
are to appear in the same order as they appear in the witness statement input. The timeline for each witness
is to begin with a line starting with a “+” followed by the name of the witness. Each distinct block of time
is to be reported by printing a line with the startTime,stopTime range, a single space, and one or more of
of the following codes: “S” for self-reported, “A” for accounted for by another witness’s account, “U” for
unaccounted for, and “C” for any time period for which there are conflicting statements. Multiple codes
are to be printed in ascending alphabetical order. Contiguous blocks of time with the same set of codes are
to be reported as a single startTime,StopTime range. No leading or trailing whitespace is to appear on an
output line.



Problem 2
Liar, Liar, Pants on Fire (continued)

Sample Input

+Benjamin

07:30,08:30,Benjamin Residence,Benjamin

08:30,10:30,Las Vegas Strip,Benjamin

09:00,10:00,Las Vegas Strip,Sam

09:00,10:00,Las Vegas Strip,Francis

+Sam

01:00,08:00,Bally’s Bar,Sam

08:15,10:30,Las Vegas Strip,Benjamin

09:00,10:00,Las Vegas Strip,Benjamin

02:00,07:00,Bally’s Bar,Francis

07:00,10:30,Las Vegas Strip,Sam

+Francis

02:00,07:30,Bally’s Bar,Francis

08:00,11:00,Las Vegas Strip,Francis

07:30,08:00,Downtown,Francis

09:00,10:00,Las Vegas Strip,Benjamin

Output for the Sample Input

+Benjamin

00:00,07:30 U

07:30,08:15 S

08:15,08:30 ACS

08:30,10:30 AS

10:30,24:00 U

+Sam

00:00,01:00 U

01:00,07:00 S

07:00,08:00 CS

08:00,09:00 S

09:00,10:00 AS

10:00,10:30 S

10:30,24:00 U

+Francis

00:00,02:00 U

02:00,07:00 AS

07:00,09:00 S

09:00,10:00 AS

10:00,11:00 S

11:00,24:00 U



2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
Rolling Correlation

The correlation of two time series X and Y is defined as:

ρ = Corr(X,Y ) = Cov(X,Y )/
√

Cov(X,X)Cov(Y, Y )

where Cov(X,Y ) is computed as

Cov(X,Y ) =
1

n

n
∑

i=1

(xi − x̄)(yi − ȳ)

and x̄ is the arithmetic mean of all xs. Similarly, ȳ is the arithmetic mean of all ys.

(Note that the correlation is undefined when one or both of the variables are constant.)

For the purpose of this problem, we will define the correlation as noticeably positive if ρ ≥ 0.001.

If X and Y are two long time series of data, instead of computing the correlation for the whole series,
sometimes it is useful to look at the correlation within a particular time window w.

For each i ≥ w we can compute the correlation of X i and Y i, where:

X i = {xi−w+1, xi−w+2, . . . , xi−1, xi}

and
Y i = {yi−w+1, yi−w+2, . . . , yi−1, yi}

The rolling correlation is the series of correlations over time for a sliding time window.

In this problem we want to compare a time series X1 to (p − 1) other time series X2, . . . , Xp. Your
team’s program is to determine the percentage of the time that the rolling correlation for a given time series
pair is noticeably positive.

The first line of the input will contain three integers: the size of each time series n ≤ 106, the number
of variables p ≤ 100, and the time window w ≤ n, separated by single spaces. The next n lines will contain
observations for each series at subsequent time points, also separated by single spaces. All observations will
be floating point numbers.

The output should contain (p− 1) lines, each with a percentage value describing the percentage of the
time the rolling correlation of X1 and Xk (for k = 2, . . . , p) is noticeably positive. Each percentage value
should be rounded to two digits after the decimal point and immediately followed by a percent sign. No
leading or trailing whitespace is to appear on an output line.



Problem 3
Rolling Correlation (continued)

Sample Input

11 3 5

1 5.5 -5

2 6.5 -4

3 7.5 -3

4 8.5 -2

5 9.5 -1

6 10.5 0

7 11.5 -1

8 12.5 -2

9 13.5 -3

10 14.5 -4

11 15.5 -5

Output for the Sample Input

100.00%

42.86%



2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4
Connect

The “Manhattan” or “taxi” distance between any two points on a grid is defined as the shortest distance
measured along the grid lines. For example, given a one-unit grid and the points A, B and C on the diagram
shown as Figure 1, the distances are as follows:

A to B: 3
A to C: 4
B to C: 1
B to A: 3
C to A: 4
C to B: 1

An interesting question then is: Given n distinct points on a grid, how many distinct shortest distances
are there between every pair of points? In the example above, the possible distances are (1, 3, 4) so the
answer to the question is “three distinct distances.” (As more points are added, eventually that number
will not increase as fast as n.) Your team is to write a program that will determine the number of distinct
distances between selected points on a grid.

Input to your program will be a map represented by an array of characters terminated by end-of-file.
The points are “x” characters and spaces are “0” characters. The map is a square: the number of characters
on each line will be equal to the number of lines. The maximum size of the map is 80 × 80. The distance
between each adjacent character counts as one unit of distance. The grid in Figure 1 would be represented
as:

000000

00x000

000000

000x00

000x00

000000

Your program’s output is to be the count of distinct shortest distances between all pairs of points on
the map. Print the count on a line with no unnecessary leading zeroes and no leading or trailing whitespace.

Figure 1. Example “Manhattan Distance” Grid.



Problem 4
Connect (continued)

Sample Input

00000000000000000000

000x00x0000000000000

000000000000000000x0

0x000000000000000x00

0000000000000000000x

00000000000000000x00

00000000000000000000

00000000000x00000000

00000000000000000000

0x00000000000000x000

0000x000000000000000

00x0000000000x000000

00x000000x000x0x0000

0x00000000x000x00000

00000000000x00000000

0000000000000000000x

00000000000000000000

00000000000000000000

0000x0000x0000000000

00000000000x00000000

Output for the Sample Input

30



2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5
Card Chain

Card Chain is a game of cards for two players, using a standard 52-card deck that has 4 suits (spades,
hearts, diamonds, and clubs) of 13 cards each (the numbers 2 to 10, jack, queen, king, and ace). Each player
is dealt a hand from a shuffled deck; each player in turn discards as many cards as possible during her turn.
The discard process follows a set of rules (given below). The winner is the first player to discard her last
card.

Given a particular pair of hands, there may be multiple possible outcomes. Your team is to write a
program that will analyze a pair of hands to find the optimal discard strategy for each player and print the
resulting score.

Each card will be represented by two ASCII characters as follows:
1st character (rank): 23456789TJQKA - for 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king, ace.
2nd character (suit): shdc - for spades, hearts, diamonds, clubs.
Examples: 6h for the 6 of hearts, Ac for the ace of clubs, Td for the 10 of diamonds, etc.

The process of discarding cards is referred to as chaining. Multiple cards can be chained together, as
long as every card follows one of these rules:
• A card being discarded has the same rank as the previous card in the chain (e.g., 8h-8s).
• A red card being discarded is of the same suit and a higher rank than the previous card in the chain
(e.g., 3h-7h, 9d-Kd).

• A black card being discarded is of the same suit and a lower rank than the previous card in the chain
(e.g., Ks-5s, 7c-4c).

For the purposes of chaining, aces are special as they can have both the lowest and the highest rank:
A < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < T < J < Q < K < A

Here are two examples of legal card chains: 8h-8s-5s-3s-3d-5d-Kd, Td-Kd-Ad-3d-Jd-Js-5s-As-Qs.

Play proceeds as follows: Two players are each dealt N (3 ≤ N ≤ 13) cards turned up so that both
players can see both hands. One additional card is turned face up to start a pile on the table. The rest of
the deck is not used.

The two players in turn try to discard their cards onto the pile as fast as possible, following these rules:

1. When it is a player’s turn, she must continue a chain based on the card on the top of the pile if it is
possible to do so. She must continue chaining cards until no card can be chained to the previous one.
She is free to choose between the multiple possible chains that can be discarded; but she must play one
of them, and cannot stop a chain early. When she can no longer legally discard any of her cards, the
turn passes to the other player.

2. If a player cannot chain any of her cards to the last pile card during her turn, she must discard exactly
one card according to the rules below, and then the turn passes to the other player:
• A black card can be discarded if it is the highest ranked black card (in case of a tie, either card
may be discarded).

• A red card can be discarded if it is the lowest ranked red card (in case of a tie, either card may be
discarded).

• Note that in this situation a red ace must be treated as the lowest-ranked red card, and a black ace
must be treated as the highest-ranked black card.

The game ends when one player discards her last card, and the points she gains are equal to the number
of cards left in the other player’s hand.



Problem 5
Card Chain (continued)

Input to your program will have the number N on the first line, the cards dealt to the first player
separated by spaces on the second line, the cards dealt to the second player separated by spaces on the third
line, and the initial pile card on the fourth line. Multiple games can be given in the same input file. All
input will begin in the first column of each line.

Your program is to print the optimal final score for each game on a separate line without leading or
trailing whitespace. Print the final score as a positive number if the first player is guaranteed to win. Print
the final score with a leading minus sign if the second player is guaranteed to win.

Sample Input

10

Th Ad Qd Qs Ts 9s 8s 6s 4s 2s

As Js 7s 2h 6h 6d 7d 8d 9d 8c

Ac

3

As Qs 3s

Ad Qd 3d

Jh

Output for the Sample Input

3

-2

Analysis of the first game:

Note that in this example, player one has only one choice for the first card to play. Her only legal play
is to start with Ad. After that she must follow with Qd-Qs-Ts. At this point she can either play Th to end
her turn or play 9s-8s-6s-4s-2s. The latter is indeed the optimal choice, leaving her with only Th in hand.
(We will not explore here what would happen if player one played Th instead, but it is in fact a worse play,
resulting in a lower score for player one.)

Next it is player two’s turn. Because the top card on the pile is 2s, she can start with either 2h or As.
At this point her goal is to discard as many cards as possible in one turn and minimize her loss, because
player one is guaranteed to win on the next turn. There are a few possible chains: As-Js-7s-7d-8d-9d,
As-Js-7s-7d-8d-8c, 2h-6h-6d-7d-8d-9d, 2h-6h-6d-7d-8d-8c, and 2h-6h-6d-7d-7s-As-Js. The last one
is the best choice, leaving her with 8d 9d 8c in hand.

In summary, the optimal series of plays results in the following game:
Player one: Ad-Qd-Qs-Ts-9s-8s-6s-4s-2s
Player two: 2h-6h-6d-7d-7s-As-Js
Player one: Th
Player two is left with 8d 9d 8c; player one wins 3 points.

Analysis of the second game:

In this example there are no legal chains for player one and she must start by discarding As. Player two
can then play her entire hand and win by 2 points.



2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6
A Classy Problem

In his memoir So, Anyway, British comedian John Cleese writes of the class difference between his father
(who was “middle-middle-middle-lower-middle class”) and his mother (who was “upper-upper-lower-middle
class”). These fine distinctions between classes tend to confuse non-British readers, so your team is to write
a program to sort a group of people by their classes to show the true distinctions.

For this problem, there are three main classes: upper, middle, and lower. Obviously, the highest is
upper and the lowest is lower. But there can be distinctions within a class, so upper-upper is a higher
class than middle-upper, which is higher than lower-upper. However, all of the upper classes (upper-upper,
middle-upper, and lower-upper) are higher than any of the middle classes. These distinctions can be carried
further: the lower-upper class can itself be divided into upper-lower-upper, middle-lower-upper, and lower-
lower-upper classes; and each of those classes can be similarly divided. . .

A class description with leading middle- modifiers is equivalent to a class description without them:
upper class and middle-upper class are equivalent, as are middle-middle-lower-middle and lower-middle.
However, lower-middle-upper class is higher than lower-upper class.

Input to your program will consist of information about up to 100 people, one person per input line.
Each line contains the name of a person, followed by a colon, a single space, and the class of the person. The
name contains up to thirty lower-case characters, possibly including spaces. The class is a string consisting
of a non-empty sequence of up to ten of the words “upper”, “middle”, or “lower”, separated from each other
by hyphens. This string will be followed by a single space and the word “class”. No two people will have
the same name.

Your program is to print the list of names from highest to lowest class, one per line. No added leading
or trailing whitespace is to appear on an output line. If two people have the same or equivalent classes, they
are to be listed in alphabetical order by name.

Sample Input

mom: upper-upper-lower-middle class

dad: middle-middle-middle-lower-middle class

queen elizabeth: upper-upper-upper class

chair: lower-lower class

uncle bob: middle-middle-lower-middle class

Output for the Sample Input

queen elizabeth

mom

dad

uncle bob

chair





2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7
2× 2× 2

The 2 × 2 × 2 Rubik’s Cube is the easier version of the famous 3 × 3 × 3 Rubik’s Cube. The current
world record for solving the 2 × 2 × 2 cube by hand in competition is 0.58 seconds. You have a chance to
set the world record for solving the cube by a program in a regional ICPC competition! Can your program
beat a human champion?

The traditional coloring of the six sides of the cube uses the colors White (up), Green (front), Red
(right), Orange (left), Blue (back), and Yellow (down). To represent the 24 squares on the surface of the
cube we will use an ASCII notation like this:

WW

WW

OOGGRRBB

OOGGRRBB

YY

YY

In this notation, the four characters in the center of the cross represent the front of the cube, the four
above them represent the top of the cube, etc.

To solve (or scramble) the cube we will use a series of moves, each consisting of rotation of one half of
the cube by 90 degrees while holding the other half in place. We will use the following notation:

R F U L D B: rotate the right/front/up/left/down/back half by 90 degrees clockwise

R’ F’ U’ L’ D’ B’: rotate the right/front/up/left/down/back half by 90 degrees counter-clockwise

Figure 1. The 12 basic moves.

For example, applying the R’ move on a solved cube would result in the following state:
WB

WB

OOGWRRBY

OOGWRRBY

YG

YG



Problem 7
2× 2× 2 (continued)

Your team’s task is to write a program that solves scrambled cubes by reading their ASCII representa-
tions and writing out solutions as sequences of the 12 basic moves. Cubes will be separated from each other
in the input by empty lines, and the last cube will be followed by end-of-file. Each solution is to be printed
on a line by itself without leading or trailing whitespace. You will not be given a cube that is already solved.

There are many different solutions possible for each case, and any solution will be accepted regardless
of its length. However, the solution must put the cube in its canonical solved state, that is with White at
the top, Green at the front, etc. No illegal input will be given.

Sample Input

BB

GR

YWOWGWRR

OWOGYRYB

BO

YG

BG

BR

RRYGYOYW

RWGOYOBW

OB

GW

Output for the Sample Input
(Not the only possible solutions)

FUR

B’L’D’D’UR’FLFD’F’B



2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 8
Persistence

Given a positive integer expressed in base ten, consider the series of numbers that will be produced

where each successive term is the product of the decimal digits of the previous term. Eventually a term will

have a single digit.

For example:

679 6× 7× 9 ⇒ 378

378 3× 7× 8 ⇒ 168

168 1× 6× 8 ⇒ 48

48 4× 8 ⇒ 32

32 3× 2 ⇒ 6

The number of steps this takes is called the persistence; thus the persistence of 679 is 5, the number

of steps it takes to get to a single digit number. Your team is to write a program that will determine the

persistence of positive integers.

Input to your program will be a series of lines terminated by end-of-file. Each line will consist of a

positive number of up to nine decimal digits, starting in the first column with no leading zeroes.

For each input number, print a line containing the number exactly as input, followed by a single space

and its persistence with no leading zeroes. No leading or trailing whitespace is to be printed on an output

line.

Sample Input

5

10

25

39

679

6788

26888999

Output for the Sample Input

5 0

10 1

25 2

39 3

679 5

6788 6

26888999 9





2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 9
Racing Gems

You are playing a racing game. Your character starts at the x axis line (y = 0) and proceeds up the
racetrack, which has a boundary at the line x = 0 and x = w. The finish is at y = h, and the game ends
when you reach that line. You proceed at a fixed vertical velocity v, but you can control your horizontal
velocity to be any value between −v/r and v/r, and change it at any time.

There are a set of gems at specific points on the race track. Your job is to collect as many gems as
possible (they all have the same value).

How many gems can your program collect? You may start at any horizontal position you want (but
your vertical position must be 0 at the start).

Input will be as follows. The first line will contain four integers, separated by spaces: n (the number
of gems), r (the ratio of vertical velocity to maximum horizontal speed), w (the width of the track), and h
(the height of the finish line). Following this will be n lines, each containing an integer x and y coordinate,
containing the coordinate of a gem. All gems will lie on the race track. None will be on the start line.

Input value ranges are as follows: 1 ≤ r ≤ 10, 1 ≤ n ≤ 105, 1 ≤ w ≤ 109, and 1 ≤ h ≤ 109.

Your program is to print a line giving the maximum number of gems that can be collected. No leading
or trailing whitespace is to appear on the output line.

Sample Input 1

5 1 10 10

8 8

5 1

4 6

4 7

7 9

Output for Sample Input 1

3



Problem 9
Racing Gems (continued)

Sample Input 2

5 1 100 100

27 75

79 77

40 93

62 41

52 45

Output for Sample Input 2

3

Sample Input 3

10 3 30 30

14 9

2 20

3 23

15 19

13 5

17 24

6 16

21 5

14 10

3 6

Output for Sample Input 3

4



2015/2016 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 10
Megachess

Your team has been hired by a group of chess enthusiasts who are interested in trying out new versions
of the game. Specifically, they are trying much larger square game boards (as large as 1000 squares on a
side) and much larger piece counts (although there is still only one king per player).

With very large boards and the potential for thousands of pieces, it becomes fairly difficult to easily
determine if a piece is in danger of capture. Your team is to write a program that will, given the positions of
the pieces on the board, determine if a given piece is in danger of capture. You do not need to determine if
the positions of the pieces are legal, only if the given piece would be in danger if the pieces were positioned
as stated.

For those unfamiliar with the rules of chess, a description and diagrams of how the various pieces capture
follows the problem description.

Input to your program will begin with a line containing two values: the number of squares on a side
(s, in the range 3 to 1000 inclusive) and the number of pieces currently on the board. This will be followed
by a list of pieces, one per line. Each piece will be represented by its color (B or W), its rank (K=King,
Q=Queen, R=Rook, B=Bishop, N=Knight, P=Pawn), its row (in the range 1 to s, 1 being the bottom row),
and its column (in the range 1 to s, 1 being the left column). Fields will be separated from each other by
single spaces, and there will be no leading or trailing whitespace on an input line. The piece whose danger
of capture is to be determined will be given first.

Your program is to analyze the board and determine if the piece is in danger of capture. If it is in
danger, print the string “In Danger” on a line by itself; if not, print the string “Not in Danger” on a line by
itself. No leading or trailing whitespace is to appear on the output line.

Sample Input 1

202 4

B K 143 74

W N 141 73

B Q 142 74

W K 1 102

Output for Sample Input 1

In Danger



Problem 10
Megachess (continued)

Sample Input 2

725 5

B R 41 643

B K 63 621

W B 85 599

W K 37 645

B N 39 644

Output for Sample Input 2

Not in Danger

Sample Input 3

19 3

W K 12 7

B P 13 8

B K 14 8

Output for Sample Input 3

In Danger



N
o

te
 t

h
a

t 
w

h
ite

 p
a

w
n

s 
m

o
ve

 t
o

 h
ig

h
e

r-
n

u
m

b
e

re
d

 r
o

w
s 

(r
a

n
ks

),
 w

h
ile

 b
la

ck
 p

a
w

n
s 

m
o

ve
 t

o
 lo

w
e

r-
n

u
m

b
e

re
d

 r
o

w
s.


